고독해...구독해... 2025. 1. 23. 23:19

09_AI

0901_AI 개요🚩

AI의 정의와 개념🚩

  • AI(Artificial Intelligence)
  • 귀납적사고(Inductive Reasoning)🚩128관2_(6)
  • 술어논리(Predicate Logic)🚩122관1_(12)
  • 특이점(Singularity)
  • 엑소브레인(Exobrain)

AI 데이터와 품질 관리🚩

  • AI학습용데이터특성🚩126관3_(6)
  • 데이터획득정제방법과기준🚩126관3_(6)
  • 데이터라벨링(Data Labeling)🚩126관3_(6)
  • 어노테이션(Annotation)🚩134관1_(6),126관3_(6)
  • 벤치마크 데이터셋
  • AI학습용데이터품질관리가이드라인🚩131관3_(1),128관2_(1)

AI의 윤리와 법적 고려사항🚩

  • AI윤리🚩134관4_(3),131관2_(3),130관2_(5),124관4_(6)
  • AI신뢰성🚩133관1_(8)
  • AI거버넌스모형🚩131관2_(3)
  • 정부의인공지능윤리기준🚩129관1_(2)
  • 딥페이크(Deepfake)🚩133관1_(10)
  • 디지털 카르텔

0902_머신러닝🚩

머신러닝의 개념과 유형🚩

  • 머신러닝(Machin Learning)🚩131관1_(7),128관2_(6)
  • 기계학습모델링(Machine Learning Modeling)🚩128관1_(4)
  • 지도학습(Supervised Learning)
  • 비지도학습(Unsupervised Learning)
  • 강화학습(Reinforcement Learning)
  • 자기지도학습(Self Supervised Learning)
  • 반지도학습(Semi Supervised Learning)

머신러닝의 알고리즘🚩

  • 퍼셉트론
  • SVM(Support Vector Machine)🚩132관2_(2),130관2_(1),127관1_(10)
  • KNN(K-Nearest Neighbors)
  • Q-learning
  • 군집(Clustering)
  • K-평균알고리즘(K-Means)🚩130관2_(1),129관1_(5)
  • DBSCAN(Density Based Spatial Clustering of Applications with Noise)🚩130관2_(1),129관1_(5)
  • SOM(Self Organizing Map)🚩134관4_(6)
  • 데이터차원축소(Data Dimensionality)🚩131관1_(5)

머신러닝 발생 문제

  • 차원의저주(Curse of Dimensionality)
  • 선형성문제(Linearity Problem)
  • 편향분산트레이드오프(Bias Variance Tradeoff)

머신러닝의 최적화🚩

  • 머신러닝최적화알고리즘(Optimization Algorithm)🚩130관1_(9)
  • 결정 트리 깊이 (Depth of Decision Tree)
  • K-값 (K for K-Nearest Neighbors)
  • 그리드탐색(Grid Search)
  • 랜덤탐색(Random Search)
  • 교차 검증 (Cross Validation)
  • Quadratic Programming (QP)
  • Coordinate Descent
  • L-BFGS (Limited-memory BFGS)

0903_딥러닝🚩

딥러닝의 개념🚩

  • 딥러닝(Deep Learning)🚩131관1_(7)

딥러닝 구조🚩

  • 신경망분석(Neural Network Analysis)🚩134관4_(6)
  • RNN(Recurrent Neural Network)
  • LSTM(Long Short Term Memory)
  • GRU(Gated Recurrent Unit)
  • CNN(Convolutional Neural Network)
  • SNN(Spiking Neural Network)🚩126관1_(4)

딥러닝 모델 유형

  • GAN(Generative Adversarial Networks)
  • DCGAN(Deep Convolutional GAN)
  • Auto Encoder
  • VAE(Variational Autoencoder)
  • GNN(Graph Neural Network)
  • GCN(Graph Convolutional Network)
  • R-CNN(Region-based Convolutional Neural Network)
  • Fast R-CNN(Fast Region-based Convolutional Neural Networks)
  • Faster R-CNN
  • YOLO(You Only Look Once)
  • Vision Transformer(ViT)

딥러닝 발생 문제

  • 기울기소실문제(Gradient Vanishing)
  • 기울기폭발문제(Gradient Exploding)
  • 딥러닝모델의수렴불안정성(Unstable Convergence)
  • 비선형성문제(Nonlinearity Problem)
  • 소프트맥스함수의출력불안정성(Softmax Output Instability)

딥러닝 최적화🚩

  • 배치크기(Batch Size)
  • 에포크 수(Number of Epochs)
  • 드롭아웃 비율(Dropout Rate)
  • 드롭아웃(Dropout)
  • ReLU(Rectified Linear Unit)
  • 배치 정규화(Batch Normalization)
  • 가중치 정규화(Weight Regularization)
  • EfficientNet🚩123관1_(3)
  • EfficientDet🚩123관1_(3)
  • 텐서플로(TensorFlow)🚩122관1_(6)

0904_머신러닝 딥러닝 공통🚩

공통 학습 기법🚩

  • 인공신경망(Neural Networks)🚩133관3_(6)
  • 피드포워드뉴럴네트워크(Feedforward Neural Network)🚩133관3_(6)
  • 오류역전파(Backpropagation)🚩133관3_(6)
  • 활성화함수(Activation Function)🚩133관3_(6)

공통 발생 문제🚩

  • 과적합(Overfitting)🚩127관1_(11)
  • 학습속도저하(Slow Convergence)
  • 비대칭가중치초기화문제(Weight Initialization Problem)
  • 메모리문제(Memory Bottleneck)

공통 최적화 항목🚩

  • 파라미터(Parameter)🚩120관4_(3)
  • 하이퍼파라미터(Hyperparameter)🚩120관4_(3)
  • 학습률(Learning Rate)
  • 정규화 계수(Regularization Coefficient)

공통 최적화 기법

  • 경사하강법
  • 학습률 조정(Learning Rate Scheduling)

공통 최적화 알고리즘 유형🚩

  • 베이지안최적화(Bayesian Optimization)🚩132관1_(3),130관1_(9)
  • 모멘텀(Momentum)🚩130관1_(9)
  • Adam(Adaptive Moment Estimation)🚩130관1_(9)
  • RMSProp(Root Mean Square Propagation)🚩130관1_(9)
  • EM 알고리즘(Expectation Maximization Algorithm)
  • 메타휴리스틱스(Metaheuristics)🚩126관1_(2)

0905_자연어 처리(NLP)🚩

자연어 처리 프레임워크🚩

  • 랭체인(LangChain)🚩132관4_(3)

자연어 처리 모델🚩

  • NLP(Natural Language Processing)🚩
  • PLM(Pre-trained Language Model)🚩133관2_(4)
  • LLM(Large Language Model)🚩132관4_(3)
  • BERT(Bidirectional Encoder Representations from Transformers)🚩123관4_(4)
  • GPT(Generative Pre-trained Transformer)
  • GPT-3🚩123관4_(4)
  • Word Embedding🚩123관4_(4)
  • 자연어처리임베딩(Embedding)🚩124관4_(1)
  • Instruct GPT
  • ChatGPT

자연어 처리 응용 기술🚩

  • NER(Named Entity Recognition)🚩123관4_(4)
  • TF-IDF(Term Frequency-Inverse Document Frequency)🚩132관3_(3)
  • RAG(Retrieval Augmented Generation)🚩134관1_(13)
  • 트랜스포머(Transformer)
  • Attention Machanism

0906_AI 모델 평가와 최적화🚩

모델 성능 평가 지표🚩

  • AI모델성능평가지표🚩134관1_(3)
  • 재현율(Recall)🚩134관1_(3)
  • 정밀도(Precision)🚩134관1_(3)
  • F1-Score🚩134관1_(3)
  • 혼동행렬(Confusion Matrix)🚩134관1_(3)

모델 최적화와 경량화

  • 오버피팅(Overfitting)
  • 언더피팅(Underfitting)
  • 편향(Bias)
  • 클래스 불균형
  • 딥러닝모델 경량화기술

0907_AI 실무 적용과 발전🚩

AI의 실무 적용과 운영🚩

  • MLOps🚩130관2_(2)
  • DSML(Data Science & Machine Learning)프로젝트🚩130관2_(2)
  • 머신러닝파이프라인(Machine Learning Pipeline) 🚩121관1_(13)

AI 도구와 자동화

  • AutoML
  • Apache Mahout
  • H2O.ai
  • Microsoft Azure Machine Learning
  • AIaaS

AI 모델 운영과 특수 기술🚩

  • AI파운데이션모델🚩131관4_(4)
  • XAI
  • 온디바이스AI(Artificial Intelligence)🚩127관2_(4)
  • 멀티모달 AI
  • 연합학습(Federated Learning)🚩128관3_(6)
  • 딥뷰(DeepView)🚩129관2_(3)
  • Adaptive AI

생성형 AI 활용🚩

  • 생성형AI🚩133관3_(2)
  • Machine Reading Comprehesion
  • Speech to Text
  • DALL-E
  • Codex